P.R.GOVT.COLLEGE (AUTONOMOUS), KAKINADA

III B.Sc. MATHEMATICS-SEMESTER-VI, PAPER-III Core: Multiple Integrals and Vector Calculus

Total Hrs. of Teaching-Learning: 45 @ 3 h / Week Total Credits: 03

Objectives:

- Introducing the concepts of curve Integrals, Surface Integrals and Volume Integrals.
- Awareness of the concepts of the transformation between curl Integration, Surface Integration and Volume integration.
- Introducing the concepts of geometrical meaning of Gradient, Divergence and Curl.

MODULE-I:

MULTIPLE INTEGRALS

<u>UNIT:1</u>.Line Integrals- Definitions-Plane curve, closed curve, simple curve, Jordan curve, length of a polygon inscribed in a curve, rectifiable curve, length of a curve, arc of a curve, functions of bounded variation, line integral-Properties and evaluation of line integrals (only problems)

(10hours)

<u>UNIT:</u>2.Double integral- Evaluation of double integrals, change of order of integration. Surface areas-Definition and evaluation of surface integrals. (12 hours)

MODULE II:

VECTOR CALCULUS

<u>UNIT:3</u>. Vector differentiation – Ordinary Derivatives of Vector valued functions, Continuity and Differentiation, Gradient, Divergence and Curl. (12 hours)

<u>UNIT:4.</u>Vector integration – Ordinary integrals of Vector Valued Functions. Green's Theorem in a plane. Divergence Theorem of Gauss, Stokes theorem and applications. (11 hours)

Prescribed text Book:

A text book of Mathematics, Vol. III, S. Chand & Co.

Books for Reference:

- 1. Dr.B.Leela Lakshmi Kumari, Prof.G. ChakradharaRao, prof. U. Ram Mohan Rao, Prof. N.Bhaskar Reddy, Third year Mathematics Linear Algebra and Vector Calculus, Telugu academy, Hyd.
- 2. Murray &R.Spiegel, Vector Analysis, Schaum series Publishing Company.,
- 3. SanthiNarayana& P.K Mittal, A Course of Mathematical Analysis.

QUESTION PAPER PATTERN, Semester-VI

MODULE	TOPIC	V.S.A.Q	S.A.Q(including choice)	E.Q(including choice)	Total Marks
MODULE-	Line integral	02	to a terminal construction of the interconstruction of the construction of the constr	ancessarentà di anti triusci linici di di di ancele di annele di annele cole cole cole cole cole cole cole c	20
	Double integral	02	03	O2	33
MODULE- II	Vector differentiation	02	02	01	20
	Vector integration	02	03	02	33
TOTAL		08	10	06	

E.Q = Essay questions (8 marks)
S.A.Q = Short answer questions (5 marks)
V.S.A.Q = Very Short answer questions (1 mark)

Essay questions : 4x8M = 32Short answer questions : 5x6M = 30Very Short answer questions : 8x1M = 08

Total Marks: 70

P.R GOVT.COLLEGE (AUTONOMOUS), KAKINADA III B.Sc. MATHEMATICS—SEMESTER-VI, MODEL PAPER — PAPER-III(Applied)' COURSE-Multiple Integrals & Vector Calculus (w.c.f.2016-2017)

Time: 3 hours

Max. marks: 70M

PART-I

Answer all the following questions.

 $8 \times 1M = 8M$

- 1. Write the parametric equations of $y^2=4ax$.
- 2. Define the norm of the partition.
- 3. State the Fubini's theorem.
- 4. Sketch the area enclosed by y=x and xy=1.
- 5. Find div f, where $f = grad(x^3 + y^3 + z^3 3xyz)$
- 6. Evaluate $\int_{0}^{1} (e^{t} i + e^{-2t} j) dt$
- 7. State Green's theorem
- 8. Write Green's Identities

PART -II

Answer any THREE questions from each section. SECTION - A 6x5M = 30M

- 9. Evaluate $\int_C \frac{dx}{x+y}$ over the curve $x = at^2$, y = 2at when $1 \le t \le 2$
- 10. Evaluate $\int_C x^2 y^2 dx + y dy$ and C is a parabola $y^2 = 4x$ in XY- plane from (0,0) to (4,4).
- 11. Evaluate $\iint_R xydxdy$ when R = [2,5; 1,2]
- 12. Evaluate $\iint_R \frac{dxdy}{\sqrt{1-x^2}\sqrt{1-y^2}}$ when R = [0, 1; 0, 1]
- 13. Evaluate $\iint_R \sqrt{4x^2 y^2}$ when R is a triangle bounded by the lines y = 0, y = x and x = 1.

SECTION - B

- 14. Find the directional derivative of $\phi = xy + yz + zx$ at A in the direction of \overline{AB} , where A = (1,2,-1), B= (-1,2,3)
- 15. Prove that div. Curl $\overline{f} = 0$
- 16. If $\overline{F} = y\overline{i} + z\overline{j} + x\overline{k}$, find the circulation of F round the curve, C where C is the Circle $x^2 + y^2 = 1$, z = 0.
- 17.If $F = 3xy\overline{i} 5z\overline{j} + 10x\overline{k}$ evaluate $\int \overline{F}.\overline{ds}$ along $x = t^2$, $y = 2t^2$, $z = t^3$ from t = 1 to t = 2.
- 18. Evaluate $\int_{V} FdV$ when $F = x\overline{i} + y\overline{j} + z\overline{k}$ and V is the region bounded by x=0,y=0,y=6,z=4 and $z=x^2$.

Answer any **FOUR** questions from the following choosing at least **ON** question from each section. Each question carries 8 marks.

4X8M=32M

- 19. Between (0,0) and (a.2a) evaluate $\int_{c}^{c} (x^2 + y^2) dx$ and $\int_{c}^{c} (x^2 + y^2) dy$ where C is the arc of the parabola $y^2 = 4ax$
- 20. Sketch the region of integration and write an equivalent double integral with order of Integration reversed and evaluate it $\iint 3y dx dy$.
- 21. In the integral $\iint (4-y)dxdy$, change the order of integration, and evaluate the integral.

SECTION - D

- 22. Prove that $\nabla \times (\nabla \times A) = \nabla(\nabla A) \nabla^2 A$
- 23. If $F = 4xz\overline{i} y^2\overline{j} + yz\overline{k}find\int_s F.Nds$ by divergence theorem where S is surface of the cube bounded by x = 0, x=1, y=0, y=1, z=0, z=1.
- 24. State and Prove Stokes theorem.

P.R.GOVT.COLLEGE (AUTONOMOUS), KAKINADA III B.Sc. MATHEMATICS, Semester VI (w.e.f 2016-2017)

Course Code: Multiple Integrals & Vector Calculus

Total Hrs. of Laboratory Exercises: 45 @ 3 hr / Week in 15 Sessions

Suggested topics for Problem Solving Sessions

- 1. Line Integral-I
- 2. Line Integral II
- 3. Double Integral-I
- 4. Double Integral-II
- 5. Directional Derivatives and Directional Derivative of Vector Point Function
- 6. Differential Operators
- 7. Integration of Vectors
- 8. Integral Transforms

Problem Solving Sessions Examinations Pattern

End of the VI semester

(Course: Multiple Integrals & Vector Calculus)

PRACTICAL EXAMINATION FOR VI Semester: 50 Marks

Written examination: 25 M

Record : 10 M

Viva-voce : 05 M Cont Ass : 10 M

Cont. Ass. : 10 M

TOTAL 50 M